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Impact Theory of the Noble-Gas-Broadened HC1 Vibration-Rotation Lines* 
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The widths and shifts of the noble-gas-broadened HC1 (0-1) and (0-2) band vibration-rotation lines 
are calculated using an impact theory similar to Anderson's. To obtain agreement with the experimentally 
observed shifts, Anderson's approach is modified in that the imaginary parts of the optical cross sections are 
calculated in greater detail. The cross sections are evaluated in a representation which allows further under
standing of the physical processes active in impact broadening. It is shown that many broadening and 
shifting characteristics can be explained upon taking into account the eccentricity of the HC1 molecule, in 
which the centers of charge and mass do not coincide. Substantial agreement with experiment is reached, 
although several features of the observed shapes and shifts—particularly the variation in width with per-
turber species—remain unexplained. 

I. INTRODUCTION 

IN recent years, many advances in near infrared spec
troscopy (1-5 y) have been made.1 Presently, the 

rotational fine structure of many molecular vibrational 
bands can be resolved with ease. In some cases, investi
gators have examined the finer details of these spectra 
in an effort to gain fundamental information not only 
about the molecules themselves, but also about the way 
in which these molecules interact with each other and 
with foreign gases. Considerable experimental effort has 
been spent, for example, on observations of pressure 
broadening and shifting in the vibration-rotation spectra 
of polar diatomic molecules, particularly the hydrogen 
halides.2-10 

The molecule whose spectrum appears to have been 
most fully examined is HC1. It is to the problem of 
interpreting the observed shapes and shifts of the HC1 
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(0-1) and (0-2) band absorption-lines broadened by 
noble gases that the present paper is addressed. In 
comparing theory with experiment, we draw freely on 
experimental results reported in Refs. 4, 7, and 10. The 
restriction to noble gases is made because the structure 
of these gases is less complicated than that of other 
foreign gases used in experimental studies, inasmuch as 
the rare gases are chemically inert and possess no un
paired angular momenta nor permanent moments. 
Correspondingly, molecular interactions involving these 
gases should be relatively simple. 

Observations reveal that the rare-gas-broadened lines 
have the following reasonably regular features: 

(1) The lines are Lorentz-shaped, at least near their 
centers. 

(2) The line-shape parameters are strongly dependent 
upon the rotational quantum numbers of the states be
tween which the radiative transitions occur. Some fea
tures of the shifts' and widths' m dependence appear to 
be the same for all rare-gas broadeners. These are: 
(a) The widths are greatest for the low \m\ lines, 
diminishing as | m \ becomes successively larger, (b) The 
changes in width from one line to another become 
smaller as \m\ increases, (c) The m dependence of the 
shifts appears to be correlated with that of the widths. 
In some cases, the shifts tend to level off at higher 
values of | m |, as do the widths, (d) The widths appear 
to be independent of the sign of m. 

(3) The widths and shifts also vary with the vibra
tional quantum number of the upper state. Specifically, 
(a) The shifts of the (0-2) band lines are roughly twice 
those of the (0-1) band lines, especially for high \m\ 
values, (b) The widths of the (0-2) band are also some
what greater than those of the (0-1) band lines, especi
ally for high | m \. 

The present calculations lead to modest agreement 
with experiment. The greatest single discrepancy lies in 
the fact that the variation in the experimentally ob
served widths and shifts in going from one foreign gas 
to another is not explained satisfactorily. Specifically, 
the predicted widths for neon- and helium-broadened 
lines are two to three times those which have been 
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observed, while in krypton and xenon broadening, the 
predicted widths are somewhat smaller. There are 
corresponding discrepancies in the predicted and ob
served shifts for these gases, although these do not 
appear to be so severe. 

The impact approximation, employed in this paper, 
amounts to considering that impacts occur instantane
ously in time. Actually, therefore, the absorbed wave 
train is replaced by an approximate one which is exact 
between collisions, while differing markedly from the 
exact during impacts. Accordingly, all but a fraction 
TdVc (where Td is the duration of typical impacts and 
vc the mean collision frequency) of the radiation ampli
tude will eventually be Fourier analyzed without ap
proximation. The impact approximation, therefore, 
leads to calculated line shapes accurate to within a 
factor Tdvc which, in the experiments of interest here 
( ~ S T P conditions), is « 1 % . 

Impact theories have already been employed in calcu
lating the widths and shifts of the rare-gas-broadened 
HC1 lines. A calculation by Babrov et al.4 revealed that 
with their understanding of the long-range forces be
tween argon and HC1, the widths calculated through 
Anderson's theory did not show good agreement with 
experiment. Ben-Reuven, Kimel, Hirshfeld, and Jaffe,7 

have made the phase shift approximation in employing 
an impact theory to obtain w-independent estimates of 
the shifts which show partial agreement with the argon, 
krypton, and xenon induced shifts at high | m | values, 
while Schuller and Oksengorn11 and Ben-Reuven, Fried-
mann, and Jaffe12 have used the same basic approach, 
with refinements, to obtain w-dependent shifts of the 
argon- and krypton-broadened lines. Here, again, par
tial agreement with the observed shifts has been 
reached. 

In this paper, an impact theory in which we have 
incorporated two innovations is adopted, allowing us to 
reach closer agreement with experiment than has pre
viously been attained. The first of these arises from our 
re-examinaton of the forces between polar and spherical 
molecules to find that the long-range interaction energy 
has, in fact, a form quite different from that previously 
considered. Using our modified interaction, the Ander
son theory13,14 can be employed to yield reasonably good 
agreement between the theoretical and observed widths, 
at least for the heavier broadeners. 

The second change comes in searching for a more 
complete explanation of the w-dependent shifts than 
Anderson's theory yields. An alternate approach is 
taken in which we employ the adiabatic representation 
(not to be confused with the adiabatic approximation) 
to evaluate the optical cross sections for broadening 

11 F. Schuller and B. Oksengorn, Mol. Phys. 5, 573 (1962). 
12 A. Ben-Reuven, H. Friedmann, and J. H. Jaffe, J. Chem. 

Phys. 38, 3021 (1963). 
13 P. W. Anderson, Phys. Rev. 76, 647 (1949). 
14 C. J. Tsao and B. Curnutte, J. Quant. Spectr. Radiative 

Transfer 2, 41 (1962). 
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and shifting. The terms appearing in the final expres
sions for optical cross-section contributions arising from 
collisions having large impact parameter can then be 
related directly to the phase shift, inelastic, and rota
tional phenomena associated with molecular scattering. 
Accordingly, these expressions appear to be more sensi
ble, physically, than analogous ones obtained through 
the use of the Heisenberg representation. The optical 
cross sections for shifting are found to differ numerically 
from those obtained through Anderson's theory, for 
reasons to be discussed in Sec. H I D . When the shifts 
are calculated according to the present treatment, the 
observed m dependencies receive an explanation. 

II. THE INTERACTION BETWEEN POLAR AND 
SPHERICAL MOLECULES 

The long-range energy of interaction between polar 
and spherical molecules is customarily written7,11 

# C oi i ( l ,2 ; /) = 

(a2fx
2—yC(v)) 

where we have neglected terms higher than inverse 
sixth power in the intermolecular separation, R(i). The 
first term represents the isotropic portion of the London 
dispersion force between the molecules, and is para-
metrically dependent on the HC1 vibrational quantum 
number. The terms in a2fi

2 represent the dipole-induced 
dipole energy (the HC1 permanent dipole moment is JJL; 
the perturber polarizability, a2), while the yC(v) term 
is a contribution to the dispersion force resulting from 
the anisotropy of the HC1 polarizability. Here, 

7 = ( a n - a 0 / ( a n + 2 a i ) , (2) 

an and ai being the components of the polarizability 
tensor in the direction of, and perpendicular, to the 
HC1 symmetry axis. The latter two terms in Eq. (1) 
have second-order Legendre-polynomial symmetry. 

Now Eq. (1) is true only in the following sense: The 
R(t) and 6 which enter the expression for £Tcoii must be 
regarded as the distance separating the centers between 
which the intermolecular attraction takes place, and the 
angle formed by this line with the HC1 figure axis. These 
centers are nearly coincident with the charge center of 
the polarizable electrons in each molecule. In the noble 
gases, the latter coincides with the center of mass while, 
on the other hand, in HC1 such a coincidence is un
expected. Here the bonding electrons, which are highly 
polarizable, are shared roughly equally by both nuclei, 
whereas the center of mass nearly coincides with the CI 
nucleus. Accordingly, d, the distance separating the 
center of (dispersion) force and center of mass in HC1 
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FIG. 1. The HC1-
noble-gas binary 
system. 

BONDING ELECTRON 
CHARGE CENTER 

MASS CENTER 

is of the order of \re ,re being the equilibrium separation 
between the H and CI nuclei. (In HC1, r e=1.28 A.) 

The equations governing the motion of the HC1 
molecule, on the other hand, are to be written and solved 
in a coordinate system whose origin coincides with the 
dynamical center (center of mass) of the molecule, the 
intermolecular separation being the displacement be
tween mass centers of the emitter and perturber. 
Accordingly, neglecting all but the first term of Eq. (1), 
we obtain a Legendre polynomial series for £Tcoii(l,2; t) 
in R'(t) and 0'—the center-of-mass coordinates (Fig. 1) 
—thus: 

= -[c(v)/R\tn{(\+5(d/R\t)y+- • •) 
+(6^/(/)+---)^i(cos(9/) 
+(16dyR'(t)*+ • • •XP2(cos0,)+ • • •} 

«-[C(v)/ i2 , (0 8 ]{l+6(rf / i? , (0) i> i (cos^) 

+ 1 6 ( ^ ( / ) ) 2 P 2 ( c o s 0 ' ) } , (3) 

terms or order [_d/Rf(f)~J and higher not being shown. 
The Pi(cos#') term, which is all-important in broaden
ing, results directly from the fact that the dispersion 
force center is displaced from the mass center in HC1. 

Our next step is to calculate the interaction in greater 
detail. Following the approach taken above, we first 
calculate in electrical-center coordinates, then transform 
to the mass-center system. The following definitions 
prove necessary for the calculation: 

R = vector running from the center of HC1 polarizable 
electronic charge to the noble gas. 

R' = vector running from the H O center of mass to 
the noble gas. 

0=angle formed by R and rCi-H, the vector drawn 
from the CI to H nucleus. 

6'=angle formed by R ; and rCi_H. 

(%&&) — coordinates of thej th noble-gas electron in a 
system of coordinates having its origin at the noble-gas 
nucleus, and z axis coincident with R. 

We assume that the HC1 molecule in the electronic 
ground state consists of a nonpolarizable Cl+ ion and an 
H + ion bonded together by two shared electrons. Ac
cordingly, (xijiZi) = coordinates of the ith shared HC1 
electron in a system of coordinates having its origin at 
the electrical center of HC1 and z axis coincident with R. 

(xnynZn) = coordinates of the nth HC1 ion in the same 
coordinate system. 

The HC1 figure axis is considered always to lie in 
the xz plane. Thus, (xi,n',yi,n,Zi,n) = (#*> cosO—Zi,n sin0, 
yi,nj Z%,n 

cos0+x;)7lsin0) = coordinates of the ith shared 
HC1 electron or nth ion in a system of coordinates hav
ing its origin at the electrical center of HC1, zf axis co
incident with rci_H and y' axis coincident with the 
y axis. 

The operator for the interaction energy between the 
two charge distributions is15 

1 
* ~ 2-J &i,n6j\-£ZitnZj Xi>nXj y%,nyj) 

jR3 i,n;j 

i 2—t 6i,n6j\J'i,n Zj Yj Zitn 

~T'\ZXiinXj-TZyitnyj 3ZiynZj)\Zi,n Zj) J - j - • (4) 

where d and e3- represent the electronic charge, and 
en=— e{. Neglecting in V all terms higher than dipole 
in the coordinates of the noble gas, Eq. (4) becomes 

1 
V~ 2_^ &i,n6j\ZZiinZj Xi>nXj yi,nyj) 

R^ i,n;j 
3 

"I 2Lu &i,n6j[J'i,n Zj 

2RU,n;j 

\Zj>n\£3Ci,n%j~lZyi,nyj *ZitnZj)_j~T~ ' (5) 

the first term representing the dipole-dipole and the 
second representing the dipole (noble gas) quadrupole 
(HC1) energy operators. The shift in ground-state eigen-
energy for the interacting molecules is 

|<00|F|AX>|* 
AE(R,d)=-Z' 

x.* Eko+Exo 
(6) 

in second-order perturbation theory, where k and X label 
the excited-electronic states of HC1 and the noble gas, 
(00) representing the groundstate, and (Eko+E\o) is 
the difference in excited state (\&) and ground-state 
energies. The prime on the summation sign indicates 
that the sum is taken over all (A&) except (00). 

5H. Margenau, Rev. Mod. Phys. 11, 1 (1939). 
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Taking account of spherical symmetry in noble gases 
and cylindrical symmetry in HC1, and assuming that 
all E\o of importance can, to good approximation, be 
replaced by I2 and all Ek0 (except £00) by Ih where I\ 

' and 12 are the ionization energies of HC1 and the noble 
gas, one obtains for the R~6 terms 

AE(R~Q terms) 

-a2M2{f COS*6+i}R-«, (7) 

3(22^2 
AE(Rr7 t e r m s ) -

R7 

Here, again, we have employed Eq. (9). Now, whereas 
(%n,yn,Zn) and their powers have no finite off-diagonal 
elements, the diagonal elements of (xi,yi,Zi) vanish. 
Therefore, the sum over k in Eq. (12) splits into two 
parts, and, replacing all nonvanishing Ek0 by Ii, we 
obtain 

1 
E f c = - C ( 0 | E n e A | 0 ) ( 0 | E i , n ^ > 2 - 3 2 2 ) 4 > | 0 ) 

i,n 6i,n\XZ)ifn \ v/J 

2e2 

(0\Xi(z*)i\0). (13) 
/ 1 + / 2 

Using the transformation relations 

(%i.n,yi,njSi,n)=(Xi,n COS6+Zi,n' SH10, 

y%,n, Zi,n COS0—Xi,n Sm0) , ( 1 4 ) 

3a2fJiQ cos30 
AE(R~7 terms) = 

R7 

6a2e
2 I2 

[<0 |Ei (O<|0> cos'0 
R7 h+h 

+3(01 Y,iW2z')i 10) sin20] c o s 6 / (1 5) 

is easily found. Here Q, simply called the quadrupole 
moment,16 is 

g=<0|E<.»^»(3« , , - f 2 )* .» |0>. (16) 

16 J. O. Hirschfelder, C. F. Curtiss, and R. B. Byrd, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954). 
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which is identical to Eq. (1). Here, as is customary, we 
have made the identifications 

]CnWrn = t*, (8) 

f ^ 2 E x K O | E y ^ | X ) | 2 / ^ x o = a 2 , (9) 

2 « 2 E * | < 0 | r * 2 / | * ) | 2 / ^ o = a „ , (10) 
and 

2e2Zk\(0\Xix/\k)\2/Ek0=al. (11) 

The Rr7 terms in AE(R,6) are found by substituting 
Eq. (5) into Eq. (6) and selecting the appropriate 
terms, thus: 

The approximate value of Q can be obtained from a 
knowledge of the rn\ Ii, an and aL. A simple calculation 
yields 

Q~e[2 Zn r w
2 - / 1 ( « „ - a i ) A 2 ] = 4 . 7 X 1 0 - 2 6 esu. (17) 

The R~8 terms of AE(R}6) are similarly found. They 
are 

9a2Q
2 

AE(R~* te rms)« ( 1 - 2 cos20+5 cos40). (18) 
32R8 

We interpret the terms entering AE(R'O) in the follow
ing way. The terms in R~& represent the usual London 
dispersion energy (written so as to account for the 
anisotropy of the HC1 polarizability), along with the 
dipole-induced dipole energy. The terms in a2fxQ and 
a2Q

2 represent quadrupole-induced dipole energies, 
where the inducing fields are those of the permanent 
dipole and quadrupole moments of HC1. The latter 
energy is not significant in broadening and will be 
neglected. The remaining R~7 terms are additional 
contributions to the dispersion energy, proportional to 
components of the electronic octupole moment tensor 
for the polar molecule. Although they are difficult to 
evaluate, for bound HC1 these terms appear to be quite 
small; they vanish identically in cases where the di
atomic molecule is electrically symmetric. We shall 
henceforth neglect them in our calculations. An ap
proximate expression for the interaction between HC1 
and the noble gas is, therefore, 

do a2 &zd 
AE(R,6)^ cos20 cos30, (19) 

Re R* R7 

[(01 Hi,n ei%nZi,n | k)(k | Y,i,ne i,n(r
2!—3z2)i,n 10)— (01 Y<i,n ei,nXitn \ k)(k | £ t \n eifn(xz)i,n | 0}— (etc. in y)~] 

X E — . (12) 
h EkQ-\-l2 
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with 

3 hh /a 
0 = ce2( -

2 / 1 + / 2 V 

3 7i / 2 /aii + 5ax\ a2iu
2 

a0 = «2 H , 
6 / 2 

Finally, we express Eq. (19) in mass-center coordi
nates {R'fi'). Writing 

(20) 1 1 * /d\n 

R fi'n-oVjRV 
(23) 

3 /1/2 /OL\\— OLj\ 3«2M2 

# 2 

3 i i i 2 /an—ceA 

2 h+h \ 2 / 

and 
azd=3a2fJiQ. 

where d is the distance separating the electrical and 
/ ^ N mass centers of HC1, and 

cos0=cos6>'-(d/i?Osin20' 
-§(d/Ry cosfl' sin20'+ • • •. (24) 

(22) The most important contributions to # c o i i( l ,2,; /) are 

# c o I 1 ( l , 2 ; / ) ~ - ( a o + ^ 2 ) ^ ^ 

- ( 1 6 ( ^ / ( / ) ) 2 a o + ( 2 6 / 7 ) ( ^ / ( / ) ) ^ 3 + ! a 2 ) P 2 ( c o s ^ ) / ^ « - 6 • (25) 

Assuming that the Cl+-ionic core is rigid and spherically 
symmetric, the electrical center is displaced from mid
way between H + and Cl+ through distance | /z | /2 |e | 
toward Cl+, thereby producing the observed dipole 
moment. Accordingly, the distance between electrical 
and mass centers is 

K(I 
2WH 

\ 
WH"f^CK 

= 0.4,9 A. (26) 

The interaction, Eq. (25), is still dominated by the 
isotropic dispersion force acting at distance d from the 
center of mass, inasmuch as Eq. (3) with d given by 
Eq. (26), constitutes a good approximation to Eq. (25). 

The "eccentricity effect" (existence of finite d) ex
hibits itself not only in heteronuclear diatomic mole
cules, but shows a strong isotopic dependence in 
electrically homonuclear molecules. For example, in 
H2, HD and HT, d=0, \re, and \re, respectively. For 
these molecules, Eq. (25) holds, with az and /* both 
equal to zero. 

The P2(cos0') terms of # c o i i ( l ,2; /) have negligible 
influence on the line shapes,17 so that Eq. (25) can be 
written, for purposes of calculation, 

#coii(l>2; i)'< 
C(v) 6dC(0)(l+8) 

R(ty m7 •Pi(cos0), (27) 

dropping the primes on R and 6 and neglecting the 
dependence of the JPI(COS0) terms on the vibrational 
quantum number. In Eq. (27) 

with 

3 hh 
C(v) = a2ai(z;), 

2 h+h 

ai(v) = l[all(v) + 2al(v)~] 

(28) 

(29) 

and 

. . -LI 
C(0)l 

4̂ 2 + 3̂ 3 

30 
*0.11. (30) 

neglecting the slight variation in 8 from one foreign gas 
to another. (The value given here is correct for argon.) 

III. THEORETICAL 

A. General 

We shall elucidate the present theory where it differs 
from Anderson's,13,14 a knowledge of that theory being 
assumed. We consider that the collisions which are 
critical in line broadening are those in which the emitter 
and perturber follow straight line paths with constant 
velocity. Three-body collisions, and in foreign-gas 
broadening, collisions between two HC1 molecules 
(emitters) are assumed to be so infrequent as to have 
no practical importance, as is justified by the experi
mental situation. 

For an ensemble of molecules in thermal equilibrium, 
the quantum mechanical Fourier integral formula18 

gives the intensity of net absorption of radiation per 
unit incident intensity at frequency co in the form 

/(co)occo/ dr e-i(*TF(r), (31) 

where the correlation function, F(r) , is 

F( r )HTr{( P l i ( / ) - i i ( / )p) 

X9C- 1 ( / -> /+r ) l i ( /+ r )9C( / -^ /+ r )} ) , . (32) 

Here, X and \i are the time development and electric 
dipole moment matrices in the adiabatic representation, 

17 R. M. Herman, thesis, Yale University, 1962 (unpublished). 18 This formula has been derived in Ref. 14. 
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to be discussed shortly. The notation (tr{ })t indicates 
that the time (/) average of the trace is to be taken. The 
elements of the statistical matrix, p, for the molecular 
system are those corresponding to a Maxwell-Boltz-
mann distribution, 

Pskcc<r*W*T8.ti (M) 

Ej° being the energy which characterizes a pair of non-
interacting molecules in a given bimolecular state, j . 
The symbols j , k, • • • refer to particular choices of 
quantum numbers which characterize the two molecules, 
and, as we assume both molecules to be in their electronic 
ground states, they actually denote specific choices of 
(vJM), the vibration, rotation, and magnetic quantum 
numbers which label the states of the vibrating rotator. 

Equations (31) and (32) contain the information 
necessary to compute the entire spectrum of the en
semble. However, we are primarily concerned with 
single lines associated with radiative transitions which 
take molecules, say, in state (v^iMi) to state (v/J/M/). 
In general, several values of the magnetic quantum 
numbers, Mi and Mf, are involved in each line. We are 
considering, here, well separated lines (vJi —> v/Mf) 
whose unperturbed center frequencies are denoted by 
(afi0. Allowing i and / simply to label the vibration and 
rotation quantum numbers of the initial and final levels 
associated with the transition, it is customary13 to write 
for the transition (i —-» / ) , 

I(i-,f)(cc — O)fi0) cc (Pi—pf)o) 

xf dT<r«*-»/i°>*Fm(T), (34) 
J —oo 

where now 

Fm(r) = (Tr^{y(t)X-Kt^ t+r) 

X|*(/+r)9C(/-^/+r)}),e-^0-. (35) 

Here, we have used the abbreviation 

Tr^{ABCD}= £ ^(.•.^)(/.^/)^(/.Jf/)(/.Jf/') 
MiMfMj'Mi' 

(36) 

As we have already mentioned, the matrices 9C and y. 
are to be calculated in the adiabatic representation. We 
now discuss the basis functions for this representation, 
together with some properties of the time development 
matrix. Let us consider a set of "collision smeared" 
total molecular-state functions19 for a given pair of 
interacting molecules, 3>j(/+r), which obey the Schro-
dinger time equation 

ihd$(t+ r)/dr = H(t+ r ) $ ( / + r) . (37) 

In binary collisions, the total molecular Hamiltonian is 

H(t) = H0(l)+Ho(2)+Hcon(lJ2; t), (38) 

where HG(1) and H0(2) are the Hamiltonians governing 
the isolated emitter (1) and perturber (2), and 
.ErCoii(l,2; /) is the collision Hamiltonain, expressed as a 
function of the internal coordinates of each and the 
separation between the centers of mass, which depends 
explicitly on time. We now expand the collision-smeared 
functions in terms of another set of time varying ortho-
normal functions, <£&(/+T), thus: 

$; (H-T) = E * 9C*; (*->/+T)0*(H-T) . (39) 

The basis functions in the adiabatic representation, 
<£&(£+r), are chosen so that at any instant of time they 
satisfy the stationary Schrodinger equation for the 
bimolecular system, 

(H(t+T)-Ek(t+T))4>k(t+T) = 0. (40) 

For convenience, we choose the time varying phases of 
<t>k(t+r) so that 

<t>k(t+r) = uk(t+T) exp -iff -1! £*(/')*'], (41) 

19 S. Bloom and H. Margenau, Phys. Rev. 90, 791 (1953). 

the phases of the Uk(t+r), themselves, being constant 
in time. (The <£&'s are defined so that their axis of quan
tization coincides with the intermolecular axis. Because 
H(t) is cylindrically symmetric about this axis [the 
zr(t) axis], 

[ / . ' ( O , f f ( 0 > 0 (42) 

for all time. Equation (42) tells us that, in binary colli
sions, the component of angular momentum along the 
intermolecular axis associated with the eigenfunctions 
<j>k is always a good quantum number. Thus, although 
the 4>k are deformed by the interaction, they still 
rigorously obey many selection rules already obeyed by 
their simpler, undeformed counterparts.) 

By substituting Eq. (39) into Eq. (37), with the aid 
of Eq. (40), the Schrodinger equation for X is seen to be 

ihdX(t -> t+r)/dr= [ F ( / + r ) - P ] 9 C ( / -> t+r) , (43) 

where D stands for the operator ihd/dr. We further 
impose the condition that at time T = 0, 

*;(') = *y(0, (44) 

which is equivalent to the condition 

9C(*->0 = 1. (45) 

At this point, through arguments similar to those 
employed by Anderson, a differential equation govern-
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ing the behavior of i7(i/)(r) can be derived, and the 
resulting width and shift of the predicted Lorentz-type 
contour are obtained. We merely state the results here. 
Assuming that all collisions occur with velocity v9 the 
mean relative velocity between emitters and perturbers, 
the width at half intensity, and the shift in center 
frequency are 

width=2m> Re{o-(;/)}, (46) 

Here, X{dr\b) and y(dr;b) represent those matrices 
after a time dr in which one and only one collision, 
characterized by impact parameter b, has taken place. 

B. Calculation of S(^/)(6) 

We express the eigenstates, <£&, in a coordinate system 
whose axis of quantization coincides with the inter-
molecular axis [the zf(f) axis], and whose y axis coincides 
with the axis about which z'(t) rotates during the colli
sion. The Euler angles through which this coordinate 
system rotates during a collision, therefore, are (a,fi,y) 
with a and y both zero and /3 running between 0 and IT. 
This is illustrated in Fig. 2, where the primed system 
turns during the collision, the unprimed remaining 
stationary. In analyzing what happens during a colli
sion, it is convenient to use the angle /3 as a parameter 
to indicate the extent to which it has progressed. For 
example, 9C(/3; b) is the X matrix during a collision 
characterized by impact parameter b in which the inter-
molecular axis has rotated through the angle 0. We 
therefore identify the matrices X(dr) b) and y(^r; b) in 
Eq. (49) with 9C(TT; b) and y(?r; b). 

Now, for collisions whose impact parameters are very 
large, the identity 

limlaC"1^; 6)V(0; b)X(p; b)}u,MS)n,Mi) 

= y(o)(/,M/)(»,Mi)^''0dr(« (so) 

holds, for no physical effect can result from infinitely 
distant collisions. Consequently, we identify 9C(j3; J = oo) 

\ , z ' ( t ) y, y'(t) 

FIG. 2. Rotating 
and fixed coordi-

where n is the numerical density of perturbers in the 
sample. The optical cross section in the adiabatic repre
sentation has a form analogous to that in the Heisenberg 
representation. Specifically, 

aiif) = 2TJ bdbSm(b), (48) 
Jo 

with the matrix of the inverse three-dimensional rota
tion operator, R~x (0,0,0), formed with the simple 
product (undeformed) eigenfunctions of the two mole
cules. Rose20 has shown that the elements of these 
matrices, written as dM'MJ(—fi), are finite only between 
states belonging to the same irreducible representation 
of the three-dimensional rotation group. Under the 
present circumstances, the dJ{—fi) matrices follow the 

; time-development equation 

) ihdJM>M(-fi) 

where the matrix elements on JVy the component of 
angular momentum along the y axis, are formed with 
the undeformed eigenfunctions in the rotating system. 
In view of Eq. (43), we arrive at the operator equation 

{H-D)^-$Jy ( J - > o o ) . (52) 

Our program for the calculation of $af)(b) is this. We 
know, through standard intermolecular force calcula
tions, how y behaves during collisions. The problem is to 
compute 9C(7r; b) which, as we have seen, is approxi-

r mately the inverse three-dimensional rotation matrix, 
and reduces to this in the limit of infinite impact 
parameter. We therefore seek the first- and second-order 
(in the collision Hamiltonian) corrections to this matrix 
for 65^00. Then, on substituting the Taylor expansion 

' of y(7r; b) and X(ir; b) into Eq. (49), we obtain the 
r (first-three terms in the) Taylor series for Sw)(b). 
v There being no unique method for determining the 

corrections to the X matrix, a procedure which seems 
optimal to the author is followed. We begin by defining 
a generalized rotation matrix, XJ which satisfies the 
equation 

ihdXJ(P; b)/dt= (H-D)JXJ(f3; b). (53) 
T 

Here, (H—D)J has elements defined through the 
relations 

(H—D)J(J,M) (k,Mf) = (H—D) (jiM) u,Mf)8j,k • (54) 

20 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

shift = — nv Im{a(if)} , (47) where now the differential optical cross section is 

f T r W ^ O j a r K d r ; b)v{dr\ b)X(dr; b)}e-™f^dT\ 
Sm(b)=\ 1 . (49) 

I TrW){v(0)v(0)> 
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Consequently, 9CJ, like dJ(—@), has finite elements only 
between initially degenerate states (hence the super
script " / " ) ; and it reduces to the customary (inverse) 
rotation matrix in the limit 6 —» <*>. The XJ matrix 
carries information regarding rotational adiabaticity in 
molecular collisions. Next, we introduce an inelastic 

the lower order contributions to 5 (»•/)(#) arising from 
the deviations of T and SCJ from unity and i£_1, and 
from the phase shifts associated with the time varying 
exponentials of the ^-matrix elements. 

There are two adiabatic limits of interest in collision-
broadening problems.21 In both of these, of course, in
elastic collisions are absent. In adiabaticity of the first 
type, the collision-smeared states remain quantized in 
a space-fixed coordinate system. Here, 

as seen above. Adiabaticity of the second kind is 
characterized by the fact that collision-smeared states 
remain quantized in the rotating intermolecular system. 
In this case, 

9C'03;J)«1. 

This is more nearly the case for small b, where initially 
degenerate levels are well-split by the interaction. The 
transition between the two types of adiabaticity as a 
function of b, and the role of rotational effects (along 
with the associated phase shifts) in influencing line 
shapes has been examined in detail in Ref. 17. The 
conclusions reached are that, inasmuch as these effects, 
governed by the P2(cos0) terms of £Tcoii(l,2; t), are 
influential in determining the line shapes, the Ben-
Reuven, Friedman, and Jaffe12 treatment is essentially 
correct. However, these effects play a minor role in 
HCl-line broadening. Instead, they are masked by the 
influence of the isotropic and Pi(cos0) terms of Hcou, 
which—in first order—do not lift degeneracies, but, 
rather, dominate the broadening through their influence 
on the yt and *£ matrices. Accordingly, replacing XJ by 
i£ - 1 (0,0,0) and introducing rj/i(b), the mean collisional 
phase-shift difference between states associated with 
the / t h and ith levels, 

Vfi{b)^frl I dt{(E(fiMf)(t] b))Mf 
./coll 

- ( £ « ) ( ^ ) k - M , (57) 
Saf)(b) becomes 

f T r ^ d ^ O ) ^ ^ ; %(0)r (7r ;&)}e^ & >l 

I TrW>{v(0)tf(0)> ) 

(58) 
21 H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959). 

scattering matrix, T*, through the relation, 

X(p;b) = XJ(l3;b)r(t3;b), (55) 

5T remaining unity during impacts in which the inelastic 
scattering amplitudes remain zero. The function S^f)(b) 
can now be written 

The phase-shift approximation is valid if T(T; 6 ) ~ 1 , in 
which case the familiar 

Siif)(b)^{l-e^^} (59) 
results. 

The differential equation governing ^(fi; b) is ob
tained by substituting Eq. (55) into Eq. (43). With the 
aid of Eq. (53), we find 

ih(dr/dt)=xJ~1i(H-D)-(H-Dyiix
Jr, (60) 

or simply 

ih(d?/dt)=XJ~\DJ-D)XJr. (60a) 

We then expand, 
00 

T*(n) being governed by 

ih(drw/dt)= XJ-l{DJ-D)XJ^n~lK (62) 

I t is apparent from Eq. (62) that 7*(1) cannot connect 
initially degenerate states. On the other hand, the 
¥ elements of importance in Eq. (58) are those which do 
connect such states. Accordingly, to obtain terms in 
S(if)(b) to second order, we replace T by ( l + ^ ( 2 ) ) in 
that equation. Expanding the exponential el^i{h) in 
powers of rj and applying selection rules obeyed by the 
y-matrix elements, we obtain 

S(if)(b)=—iVfi(b) 
+hfi(by-(r(f,Mf)(f,Mf)^~1(7r;b))Mf 

-<f(^)(^) ( 2 )(^;»)>^+--- , (63) 

where the notation { )M indicates that the average over 
M is to be taken. Expanding $af)(b) in ascending 
powers of Hcou, 

S(if)(b)=Y,S(if)(nKl>), (64) 

and making identification with the terms in Eq. (63), 

•SW>(0)(*) = 0 , (65a) 

SW)<»(J) = - * W 1 ) ( i ) , (65b) 

TrW'^oK-KTr; jjay-Kx; %(*•; Wit; 4)nir;&)}<rfa''0,'r('r)i 
SmQ>)= 11 in , N , x , (56) 

Tr^fyOyO 
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Thus, 

-iT)fi{2\b)-{?u,Mf)U,Mf)^\^b))Mj 

— (TiitMdUMi)™^; b))Mi (65c) 

are obtained, r]fi(n)(b) representing the phase-shift con
tributions arising from wth-order perturbations in 
energy. 

C. Calculation of the Diagonal ^ 2 ) ( > ; b) 
Elements 

dr(ir) 

dt'H{t';b)ik ., (3»o) 

X dt"H(t";b)kju-°\ (69) 

./o 

accurate to terms in second order. Since <T is unitary, 

o r > . . ( 2 ) - l = < r \ . ( 2 ) * 
1 .1.1 -1 .7.7 

Before going further, we must evaluate the (DJ-D) N o w H(P'> h) c a n b e f o u n d f r o m E c h (27) through 
matrix. This can be accomplished by differentiating straightforward calculation, employing standard rules 
Eq. (40) with respect to time, multiplying on the left f o r transformations between spherical harmonics in 
by 0 / H - r ) and integrating over configuration space coordinate systems rotated with respect to one another. 
to obtain 

(DJ-D)jk = ihti(ft b)ik/Eik(P; b), 
states j and k nondegenerate (66) 

= 0 , states j and k degenerate. 

In seeking terms second order in £rcoii(l,2; t), it is 
permissible to neglect all but the lowest order terms in 
(DJ—D) and 9CJ. Applying the theory of finite rotations 
and substituting from Eq. (66), Eq. (60a) now becomes 

Denoting by #0 and <£0 the polar and azimuthal angles 
in the fixed system, 

H-
yvb2 

'R(ty< 

vt\2 

Fi°(0o*o) 

+ 4 ^ - - ) [ F 1 - l ( e o 0 o ) - F i K ^ o ) ] } (70) 

dTjk(0; b) 

dt 

H(P;bh .,(0=0) 

i V 
-?ik(P',b). (67) 

holds for straight trajectories, with 

7 = 6(f7r)1/2JC(0)(l+5). (71) 

where the B(fi; b) matrix elements, formed on eigen- In Eq. (70), we have omitted isotropic terms, in view 
functions in the fixed system, are of the fact that their matrix elements in Eq. (69) 

vanish. Substituting Eq. (70) into Eq. (69), and neglect-
8(P', ^yz(^=o) = <<^O)*|#(0; &)|<M0)y^0 ( M / 3 ) . (68) ing terms for which v^v', 

r'(vJM)(vJM)(2)(7r;b)=— 2 ( ) 
J'^JM'\Ej>/) 

32v"b2((JM\Yr1-Y1
1\J,M,y^^)21 

00 tdte~™J'JH rl t'dt' ei0}J'J°tf 

+v2b2((jM\Y1°\j/M/y^o)y 

r tdte-™J'Jl r 

( • - < f ) > — , ( I -<T)V 

*((')' 

eia>j,j0t' 

R(ty R(ty 
(72) 

is obtained. The averages over M in Eq. (65c) can be is obtained, with 
taken with the summation on Mf in Eq. (72). For rigid 
rotator eigenfunctions, ^ %d% e_ikx r ^ , eikx, 

A(k) = (A 
<r, (,vJM)(vJM) <2>(V: Or; b))t 

( y \2g(J,J')A(kj,j) 

J'\EJ,J°J 
(73) 

(i+*2)5 J_oo (i+xny 

(l — 7x2)e-ikxdx rx (l — 7xn)eikx'dx' 

(1+x2)6 (i+xny 
(74) 
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and 

spvn= 
4 T T ( 2 / + 1 ) 

(Jtj.j>+i+(J+l)dj,j>-i). (75) 

Here, we have introduced the variables 

%—vt/b and kj>j=uj>j°b/v. 

The function A(k), equal to A*(—k), has been evalu
ated17 by replacing (l+x2)~5 by e-V'06x)* in Eq. (74). 
The replacement function, very similar in appearance 
to the original, has been normalized with respect to its 
value at # = 0 and its integral over x from — oo to oo. 
The accuracy to which A(k) is obtained in this ap
proximation is indicated in part by the fact that 
X-oo00 A (k)dkj when calculated approximately, differs 
from the exact value by 2.4%. The function A(k), to
gether with its asymptotic value, 

l i nL4(* )=- i2 .705 /* , (76) 

is shown in Fig. 3. 

FIG. 3. The function 
A(k). 

and 

Hif) •W»(*) 

1 

~ 2 [SW) ( 1 )(&)]2 
48TT<22C(0)2(1+S)2 

xfet tfA/'M(*/'*(*)) g(Jf,J')A(kJfA!>)) 

EJ.J? E. jfj'' 

>W)\ 

(*). 
+0.0562* (S^.O-SJ /«..)] • (80) 

D . Further Reduction of S«/> (b) 

I t remains now for us to calculate the first and second 
order phase shifts appearing in 5,(i/)(1)(6) and 5(,/) (2)(6). 
For the former, only the first term in Eq. (27) is im
portant. For i?~6-dependent perturbations,21 

VfWb) aVM=-
3?rC(0) /ai(vf)—ai(vi) 

Shvb6 

/oii{vf)—ai{Vi)\ 
(77) 

independent of rotational quantum number. 
The second-order phase shifts vanish for all but the 

Ro and P i lines, consequent to the fact that second-order 
perturbations, when averaged over M, vanish for all 
but the 7 = 0 levels. This phase shift, for these levels, is 

231 / 7 \ 
W » ( J ) = — ) 

4096\£ 1 0
0 / 

231 / 7 \ 2 *io 

bu 
(78) 

as can be easily verified. The fact that 

dt 231TT 

/ . _oo R(t)u 1024t#13 

is useful in this connection. 
Substituting Eqs. (73), (77), and (78) into (65b) and 

Inspection of Eq. (80) reveals that Saf)(2)(b) is complex. 
This differs from the results of Anderson's theory, in 
which this quantity is real. The two treatments yield 
numerically equivalent forms for <5(2) if one does not (as 
is usually done) neglect the noncommuting contribu
tions to Anderson's time development matrices. The 
fact that 5 ( 2 ) is complex leads to differing shifts for the 
R and P branch lines of equal | m | , as are observed 
experimentally. 

The terms to second order in the expansion of Sw)(b) 
constitute a good approximation to it for large impact 
parameters. On the other hand, for small values of b, 
this approximation is inadequate. Instead, we rely on 
physical arguments to tell us that very close collisions 
cause a complete interruption of the radiation, so that, 
effectively, 

\imb^oS(if(b) = l. 

We shall employ a method of approximating Sw)(b) for 
intermediate values of b, similar to that adopted by 
Tsao and Curnutte14 (Anderson's approximation num
ber two). In that treatment, S^/)(b) is identified with 
the first three terms of its series expansion for values of 
b>bo, and is taken to be unity for b<b0. The critical 
impact parameter, b0) is determined through the 
condition 

>(*/) 
(2) (6o) = l . (81) 

(65c), we obtain the following expressions for Sm™(b) T h e l o g i c h e r e i s t h a t sW)™(b), S(if)^(b), • • -cannot 
a n d £ W 2 > ( £ ) 

.Sw) ( 1 ) (*)=- t -
3TTC(0) /ai(vf)—on(vi) 

Shvb5 

/ai{Vf)—cLi{Vi)\ 
(79) 

be neglected when S W )
( 2 ) (&)>1 ; hence, SW)(b), for 

b<boj is thought to more nearly equal the " complete 
interruption" value of unity. Now, in our treatment, 
the situation is complicated by the fact that »£(»•/) (2)(&) 
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(a) FIG. 4. Real and 
imaginary parts of 
S(if)(b) (schematic). 

(b) 

is complex. Moreover, the imaginary contributions to 
Eq. (65c) sometimes cancel, so that the 2"(2) elements 
themselves might be quite small, even though T is not 
well approximated by its first three terms. Correspond
ingly, S(if)

{z)(b), SW)(4)(6), ---can be large, even 
though Saf)(2)(b) is itself quite small. Consequently, a 
better criterion for determining bo is one on the magni
tudes of the individual contributions to the T(2) matrix 
elements. Our generalization of Eq. (81) as a condition 
on b0 is, therefore, that the sum of the magnitudes of 
the individual contributions to S^/)(2)(b) be unity, or, 
in our case, 

•*[5(,-/)«>(io)]H 
48x<22C(0)2(l+S)2 

X feC 
•giW) \A(kj.J{(b0)) | 

EM? 

g(Jf>J')\A(kJfJ-(bo))\\ 

EjfJ? ) 

+0.0562 (*/,.o+«*.o) = 1 - (82) 

This condition reduces to Eq. (81) whenever all con
tributions to 5(,/)(2,(J) are real. The real and imaginary 
parts of the Saf)(b)'s resulting from our method of 
approximation are illustrated schematically below 
(Fig.4).^ 

Confining our attention to a single vibrational band, 
for the moment, we observe from Eqs. (79), (80), and 
(82) that 

Sm^(b) = S^(b), (S3) 

and 
(bo)m— (bo)-m, 

in view of the similarity in rotational structure of each 
vibrational level. These properties of Sa/)(b) and b0 

imply, for the predicted widths and shifts, the following 
regularities: 

TABLE I. The parameters a, I, and C(0). 

Gas 

HC1 
He 
Ne 
Ar 
Kr 
Xe 

a 
(A3) 

2.64 
0.205 
0.39 
1.63 
2.46 
4.01 

/ 
(eV) 

13.8 
24.5 
21.5 
15.7 
13.9 
12.1 

C(0)X10«> 
(erg cm6) 

11.5 
20.8 
75.9 

108.0 
164.5 

(1) The widths of the m and — m lines are equal 
within a given band. 

(2) The shifts receive contributions from two terms, 
Sm^(b) and Im{S(i/)<

2)(&)}. The contribution from 
Saf)(1)(b) is the same, whereas that from Im{S(i/)(2)(#)} 
has equal magnitude but opposite sign for the m and 
—m lines. 

(3) The mean (red) shift of the equal | m | lines arises 
solely from £(*/)(1)(6), and varies, from one value of 
| m | to another, as &o~~3. The width of these lines, on the 
other hand, is proportional, roughly, to b0

2. Therefore, 
an approximate relationship, 

[shii t (m)+shift (—m) ] 
X[width(m)+width(-m);p~ const (84) 

should hold. 
Qualitatively, the gross features of noble-gas broaden

ing can be understood in the following way. As / in
creases, spacings between adjacent energy levels also 
increase, with inelastic collisions becoming less frequent. 
Consequently, the higher \m\ lines are less severely 
broadened, as has been observed in experiment. Along 
with the decrease in width (and in bo), the domain over 
which first-order phase shifts are to be integrated in
creases, increasing the mean red shift of the equal | m \ 
lines (unless, of course, short-range forces reverse this 
tendency for smaller b values). The tendency for the 
R and P branch lines of equal | m \ to shift unequally is 
most pronounced for the case | w | = l , inasmuch as 
second-order perturbations contribute to the phase 
shifts for these lines alone. 

IV. RESULTS AND DISCUSSION 

The numerical calculation of the widths and shifts is 
carried out using Eqs. (79) and (80) for S^/)a)(b) and 
S(if)

(2)(b), with A(k) and g(J,J') given by Eqs. (74) 
and (75), the condition Eq. (82) being used to determine 
6o. The widths and shifts are then related to Sa/)(b) 

V 

0 
1 
2 

TABLE II . The factors [>i 

(Ref. 7) (Ref. 11) 

0 0 
0.011 0.019 
0.025 »0.038 

w--ai(0)]/a 

(This 
paper) 

0 
0.025 
0.050 

L(0) . 

(this paper) 

2.64 
2.71 
2.77 
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HALF INTENSITY WIDTH 

(cm-1 atm-1 AT 300° K) 

HELIUM (0-1) BAND 

^ - J f Q A x" 

/4 

(a) 

HALF INTENSITY WIDTH 

(CM1 ATM1 AT 300°K) 

NEON (0-D BAND 

(b) 

HALF INTENSITY WIDTH 

(cm-1 atm' AT 300° K) 

ARGON (0-1) BAND 

B--*. 

HALF INTENSITY WIDTH 

(CM1 ATM1 AT 300°K) 

KRYPTON (0-1) AND (0-2) BANDS 

(c) (d) 

HALF INTENSITY WIDTH 

(cm-1 atm"1 AT 300° K) 

FIG. 5. (a)-(e) Half-intensity 
widths. Theoretical; 
observed; n-Ref. 4 (P branch); 
X-Ref. 10 (P branch); O-Ref. 10 
(R branch). 
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NEGATIVE SHIFT 

(CM*' ATM"' AT 300°K) 

NEGATIVE SHIFT 

(CM - 1 ATM"1 AT 3 0 0 ° K ) 

NEGATIVE SHIFT 

(CM - 1 ATM"' AT 3 0 0 ° K) 

HELIUM (0-1) BAND 

NEGATIVE SHIFT 

(CM"' A T M " ' A T 3 0 0 ° K ) 

0.03+ 

NEGATIVE SHIFT 

(CM _ I ATM"' AT 3 0 0 ° K) 

- 4 - 2 0 i 2 4 

(c) 

NEGATIVE SHIFT 

(CM"' ATM"' AT 300°K) 

We\0-02 

(d) (e) 

FIG. 6. (a)-(f) Negative line shifts. Theoretical; -

- 4 - 2 0 ' 2 4 6 8 
1 m 

XENON (0-1) AND ( 0 - 2 ) BANDS 

(f) 

- observed; Q-Rd. 7; O-Ref. 10. 

through Eqs. (46), (47), and (48). Numerical values of 
the parameters a, I, and C(0) needed for the calculation 
are given in Table I, while numerical values of the 
factor Zai(v)—ai(0)2/ai(0) for v= 1, 2 used in the calcu
lation are given in Table II , together with the values 
of that parameter calculated by Ben-Reuven et al? and 
by Schuller and Oksengorn.11 Our values were chosen 
so as to fit the observed argon, krypton, and xenon in
duced low \m\ line shifts. The calculated widths and 
shifts are not very sensitive to small variations in this 
parameter, however. 

The calculated values are indicated by solid lines in 
Figs. 5 and 6, along with experimental points through 
which broken lines have been drawn. In general, the 
agreement between our predictions and experiment is 
good. The volume and complexity of data to be ex
plained, together with the over-all agreement, support 
the belief that we are basically correct in our description 
of noble-gas broadening. The most serious discrepancy 
lies in the variation in the magnitude of the widths in 
going from one broadener to another. The smallness 
of the He- and Ne-induced widths is indeed mystifying. 
Not only are the bo as inferred from these widths less 
than that impact parameter at which the adiabatic 
approximation is supposed to have broken down, but 

they are considerably less than the gas kinetic radii, as 
well. Because the experimental widths for He and Ne 
(also, higher | m | line widths for heavier perturbers) are 
small, we expect short range forces22 to be operative in 
determining the shifts of these lines. Consequently, it 
does not surprise us to find that some lines are blue 
shifted (with He), and as the widths become smaller we 
look for the lines to be shifted even more toward the 
blue, a fact that is observed experimentally.23 

A less serious discrepancy lies in the fact that in Ar, 
Kr, and Xe broadening, the theoretical widths and 
shifts show a stronger tendency to level off then do their 
experimental counterparts. In our calculation, the level
ing takes place when the phase shift terms in Sa/)(2)(b) 
become dominant over the inelastic collision terms. The 
leveling seems to be present in some of the observed 
widths [cf., xenon (0-2) band] ; however, it has much 
less importance in practice than it does in theory. Here 

22 Because the HC1 molecule effectively is more extended at higher 
v (consequent to the fact that the nuclei oscillate more widely 
about their equilibrium position), colliding molecules experience 
repulsive (exchange) forces at larger separations, the higher the 
HC1 vibrational quantum number. Hence, short-range forces tend 
to widen the spacing of vibrational bands, causing blue shifting. 

23 Our remarks on the influence of short-range forces generally 
concur with those of the authors of Ref. 12. 
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again, exchange forces could act to prevent the observed 
widths and shifts from leveling off. 

The observed 

[shift(w)+shift(—m)Xw idth(w)+width (—w)]3/2 

values, instead of being constant as theory predicts, 
increase then decrease as \m\ increases.17,24 There is no 
obvious reason for the increase at low \m\. The decrease 
often occurs when the optical radii—as determined from 
the observed widths—approach or became smaller than 
the gas-kinetic radii. In He and Ne broadening, how
ever, such a correlation cannot be found, all emperical 
optical radii being smaller than gas-kinetic from the 
start. 

24 R. M. Herman (to be published). 

I. INTRODUCTION 

MERCURY has two stable isotopes with nonzero 
spin, Hg199 with J = ± and Hg201 with 7 = f . 

Hg197 is radioactive with a half-life of 65 h. I t also has 
I=i. The hyperfine structure of the 3Pi state of Hg201 

has been measured by Kohler.1 This work is basically 
an extension of Kohler's method, applied to Hg197 and 
Hg199. The hyperfine-structure splittings in the ZPX 

state of Hg197 and Hg199 have been measured to an ac
curacy of approximately one part in a million. For both 
isotopes this represents an increase in the accuracy, 
over existing measurements, of a factor of approxi
mately 100. 

t This work, which is based on a thesis submitted to the Depart
ment of Physics, Massachusetts Institute of Technology, in partial 
fulfillment of the requirements for the degree of Doctor of Philoso
phy, was supported in part by the U. S. Army, the Air Force 
Office of Scientific Research, and the Office of Naval Research. 

* Present address: McMaster University, Hamilton, Ontario, 
Canada. 

1 R. H. Kohler, Phys. Rev. 121, 1104 (1961), 

An experimental determination of the rare-gas-
broadened pure rotation [(0-0) band] linewidths and 
shifts would be worthwhile at the present time. Since 
first-order phase shifting is not operative in broadening 
and shifting these lines, the effects of inelastic processes 
alone could be studied. To extend our calculations to 
these lines would be routine. However, this step has 
not yet been taken, inasmuch as comparison with 
experiment is impossible at the present time. 
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This increase in accuracy permits one to obtain the 
hyperfine-structure anomaly in the 3Pi state. The hyper
flne-structure anomaly for Hg199 and Hg201 has pre
viously been measured in the IP2 state2 and by means of 
the Knight shift.3 The agreement between these results 
is excellent. 

II. APPARATUS AND METHOD 

A. Excitation and Detection 

The relevant energy levels of the mercury atom are 
shown in Fig. 1. The 8Pi state is connected to the ^So 
ground state by the 2537 A resonance line. On the right-
hand side of Fig. 1, the relative positions of the hyper
fine components of the 2537 A line are shown, including 
only those isotopes that are relevant for this discussion. 

2 M. N. McDermott and W. L. Lichten, Phys. Rev. 119, 134 
(1960). 

3 J. Eisinger, W. Blumberg, and R. Schulman, Bull. Am. Phys. 
Soc. 4, 451 (1959). 
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Hyperfine Structure of Hg197 and Hg199f 
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The hyperfine structure of the 3Pi state of Hg197 and Hg199 has been measured by a microwave-optical 
experiment. This involves optical excitation to the desired state, paramagnetic resonance in this state, and an 
optical method of detecting the paramagnetic resonance. The paramagnetic resonances were obtained be
tween different F levels as a function of magnetic field. Quadratic Zeeman corrections were estimated by 
second-order perturbation theory and the corrected transition frequencies were then extrapolated to zero 
field. The zero-field hyperfine-structure splittings in the 3Pi state are Hg197CF = f to F = | ) = 23 086.37(2) 
Mc/sec, Hg199(F = f to F = §) = 22 128.56(2) Mc/sec. Hyperfine-structure constants A are obtained which 
are correct to second order. These are combined with the known nuclear magnetic moments to give the 
hyperfine-structure anomaly in the 3Pi state: A(3Pi,Hg199,Hg201) = —0.00147(1), and the anomaly of the 
hyperfine-structure interaction for the 6s electron in the 3Pi state: A(si/2,Hg199,Hg201) = —0.00175(9). 


